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ABSTRACT: Block polymers present an almost endless realm of possibilities
to develop functional materials for myriad applications. The established self-
assembly of block polymers allows researchers to access properties that are
inaccessible in homopolymers. However, there is a need to develop more
sustainable options than the current commodity block polymers. Derived from
renewable resources and industrially compostable, poly(lactide) (PLA) is at the
forefront of technological advancements in sustainable block polymers. Its
material properties including high stiffness, relatively high glass transition
temperature, and semicrystallinity in isotactic versions lend themselves to many
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applications, and its ease of synthesis provides a well-established platform for

developing high-performance materials. This Perspective highlights recent advancements associated with PLA-containing block
polymers, including their syntheses, mesostructural considerations, and mechanical properties, from resilient elastomers to tough
plastics. We also give our perspective on the subfield of PLA block polymers, our outlook on the future, and our assessment of

exciting developments yet to come.

B BACKGROUND AND MOTIVATION

Since its post-World War II beginnings, the modern polymer
industry has established most of its markets in nonrenewable,
single-use (often plastic) products. The single-use paradigm
has been extremely profitable, as it inherently sustains demand
while offering consumers lifestyle conveniences generally
unmatched by other commodity materials."” By entrenching
this mindset in our economy and everyday lives over the last
half-century, society has created two crucial problems for
plastics. The first is massive pollution. Roughly 80% of all
plastics ever produced have been landfilled or mismanaged,
disrupting terrestrial and aquatic ecosystems.”* Beyond the
destruction of habitats allocated for landfilling, ubiquitous
macroscopic plastic waste and the derived microplastics pose
novel toxicological threats to humans and other living
organisms.” " The second problem is our wholesale reliance
on fossil feedstocks for these materials. Polymers have been a
consistent driver of oil and gas demand growth for
petrochemicals, and single-use plastic regulation is projected
to hold the greatest influence over future demands on these
nonrenewable resources.” Without system change, plastics
share of oil consumption will likely rise to ~20% and its share
of the carbon budget to ~15% by 2050."" Along with shifts to
renewable energy sources and environmental protection, a
livable future depends on a circular plastics economy.

Such is the appeal of poly(lactide), or PLA. Lactide, the
cyclic dimer of lactic acid, is renewably produced from
bacterial fermentation of plant-based dextrose (p-glucose),
most notably from corn.'' The enantiomer of lactic acid
enzymatically produced can be tuned by selection of the
bacterial genus.12 Hence, atactic, amorphous poly((+)-lactide)
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(sometimes labeled poly(p,L-lactide) or PDLLA); poly(meso-
lactide); and the isotactic, semicrystalline poly((—)-lactide)
(often labeled poly(r-lactide) or PLLA) and poly((+)-lactide)
(often labeled poly(p-lactide) or PDLA) are readily accessible.
(We note that the abbreviation “PLA” is often ambiguously
used to refer to any or all the aforementioned tacticities;
herein, we have taken care to identify PLA tacticity where
appropriate.) Cargill’s seminal 1993 patent for coupling lactide
synthesis and its subsequent tin-catalyzed ring-opening trans-
esterification polymerization (ROTEP) opened the door to
scalable production of high-molar mass PLA, and with it,
numerous market opportunities.'”> Due to PLA’s broad
compatibility with human tissues and tunable in wvivo
degradation, early research focused primarily on biomedical
technology applications such as stents, cell scaffolding, drug
delivery, resorbable sutures, and rigid surgical apparatuses, but
has since expanded to a wide variety of consumer items.'*"®
PLA is amenable to typical polymer processing operations,
including extrusion, injection and blow molding, thermoform-
ing, and fiber spinning. PLA’s high stiffness, strength, and
transparency, similar to properties of poly(styrene) (PS), have
placed most of its market presence in flexible and rigid
packaging, fibers, and consumer goods.'°™"® The U.S. Food
and Drug Administration permits the tin(II) 2-ethylhexanoate
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(Sn(oct),) ROTEP catalyst at 1 wt % maximum in food-
contacting resins'’ and in 2005 granted the first PLA food
contact substance notification to NatureWorks LLC (a Cargill
subsidiary),”” allowing PLA produced using Sn(oct), to enter
the single-use-dominated food packaging market.”' As an
aliphatic polyester, PLA can be hydrolytically degraded in
industrial composting conditions, enabling a closed-loop
carbon cycle (CO, and H,O generated in compost are taken
up by plant feedstocks for PLA).”” Amidst mounting
concerns™ about the ecotoxicological effects of micro- and
nanoplastics, Holland Bioplastics recently commissioned
HYDRA Marine Sciences for a meta-analysis of PLA
degradation behavior. The authors posit that as long as
moisture is available, even if outside of industrial composting
conditions, PLA will continue to hydrolyze until the small
molecule and oligomeric products are water-soluble, prevent-
ing the long-term buildup of micro- and nanoplastic particles.”*
The success of its applications has solidified PLA as the most
widely produced synthetic, circular polymer. Its production
capacity has exceeded forecasts and is expected to accelerate in
the coming years (Figure l),25 promising ongoing contribu-
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Figure 1. Realized and projected production capacities of PLA over
time. Data were taken from European Bioplastics Market Updates
from 2016 to 2024.>°

tions to the growing market for compostable plastics; under a
comprehensive “system change scenario,” compostables’ share
of the plastics market is expected to reach 9% by 2040.>°

Early investigations of PLA block polymers envisaged them
as drug delivery vehicles, with co-blocks including poly(e-
caprolactone) (PCL)*”*® and poly(ethylene oxide)
(PEO).”*° We estimate that the largest PLA block in these
early block polymer examples had a molar mass of ~20 kg
mol ™!, while the largest PLA species mentioned was a
commercial ~30 kg mol™ PLA sold by Polysciences, Inc.*
Cargill’s commercial approach for controlled synthesis of high-
molar mass PLA*"** offered polymer scientists designer, high
molar mass PLA chains wherever there lay an exposed
hydroxyl group, whether on a small molecule alcohol or a
macroinitiator. The combination of synthetic control, renew-
able sourcing, biocompatibility, and biodegradability (under
suitable conditions) led to an explosion of interest in PLA
block polymers, with citations growing steadily before
plateauing in the late 2010s (Figure S1). During that time,
they have found use in, for example, microelectronics,®***
membranes and mesoporous materials,” " drug delivery,””*’
and thermoplastic elastomers.*"**
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In this Perspective, we highlight the recent developments,
successes, and current promise of PLA block polymers for a
sustainable future (Figure 2). Here, we focus on materials that
retain the PLA block at the end of preparation — that is, the
PLA block is not purposefully etched or otherwise degraded
(e.g, as in nanoporous membrane applications). Additionally,
we have deliberately excluded PLA—PEO block polymers from
our scope, as there are already several excellent reviews
chronicling these materials’ rampant success in biotherapeutic
applications.””**~* The examples we have chosen are not
exhaustive; they are representative of numerous modern and
exciting advances in PLA block polymer science. We first
overview key developments in PLA block polymer synthesis,
along with several examples of PLA’s utility in block polymer
mesostructure discovery. Thereafter, we detail bulk materials-
focused research on PLA block polymers, covering applications
in adhesives, elastomers, and rigid plastics. Finally, we outline
the opportunities for academic researchers to address
remaining technological barriers to PLA’s proliferation. By
attuning to a broader range of value chain stakeholders’ needs,
polymer scientists can target more actionable material
interventions to support the industry in keeping pace with
the global sustainability commitments for the 21st century.

B SYNTHESIS

The field of block polymer synthesis has seen enormous
growth in the past half-century, and with those advancements
comes the ability to tailor-make a vast array of macro-
molecules.*® Perhaps the simplest case of PLA block polymer
synthesis is the formation of aliphatic polyesters through the
ROTEP of lactide with other lactones. However, judicious
choice of catalyst, initiator, comonomer, and polymerization
method(s) allows for almost any combination of polymeric
segments to be synthetically joined in a block polymer. We
highlight selected recent PLA block polymer advancements
that enable the synthesis of unique structures that benefit from
incorporation of various other segments.

Synthetic efforts that exploit the ability of PLA to form
interesting crystalline phases have been recently advanced. It is
well-known that isotactic PLLA or PDLA can crystallize into a
105 crystal structure.”” Further, when blended together, PLLA
and PDLA can form a stereocomplex (SC), a densely packed
3, crystal structure with an increased melting temperature (230
°C vs 180 °C), a higher crystal modulus (20 GPa vs 14 GPa),
and more rapid crystallization kinetics compared to PLLA or
PDLA alone.**™' However, when blending high molar mass
chains, typically mixtures of homocrystallites and SC
crystallites are observed due to slow polymer diffusion.*
Covalently linking PLLA and PDLA into PLLA-b-PDLA block
polymers, or stereoblock PLA, helops to surmount this kinetic
barrier to stereocomplexation.””” Facile synthesis of these
stereoblock polymers via sequential polymerization of
(—=)-lactide and (+)-lactide®® > further advances the design
of polymeric molecules for a diverse array of applications.
Rosen et al. reported a highly active chloro-magnesium
complex enabling controlled formation of stereoblocks (up
to hexablocks) of PLA within minutes by way of a one-pot
sequential addition method.”* The resulting polymers’ molar
masses were narrowly distributed (B < 1.07), and they had
melting temperatures of up to 215 °C.>* Further work
demonstrated the successful synthesis of PCL-b-PLLA-b-
PDLA and PDLA-b-PLLA-b-PCL-b-PLLA-b-PDLA block
polymers using the same chloro-magnesium complex.’
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Figure 2. PLA block polymers can be bioderived and compostable, supporting a circular plastics economy.
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these systems, organocatalytic (thio)ureas stand out as metal- 1w S

free, highly active, and highly stereoselective.”***™®" These
(thio)ureas often require a cocatalyst, and the following have
been studied for this purpose: N-heterocylic carbenes,’
phosphazene bases,”’ and cyclopropenimine.’’ These systems
can reach high levels of stereoselectivity up to P, = 0.93
(where P, is the probability of meso dyads, or adjacent
stereocenters with the same absolute configuration, typically
quantified using 'H NMR sépectroscopy), with melting
temperatures up to 189 °C.°”*" Interest in SC PLA arises
from the slow crystallization of the homochiral chains, which
make it difficult to achieve high degrees of crystallinity using
common industrial processing conditions such as injection
molding, extrusion, and thermoforming.m“_64 The incorpo-
ration of SC PLA within block polymers improves the
crystallization kinetics drastically, without the need for
heterogeneous nucleating agents, such as talc or clay.**
Combined with the higher crystal modulus of SC PLA, this
is a promising way to improve the readiness of PLA block
polymers for common industrial processing methods.

PLA block polymers have historically been synthesized
through anionic®”*~% or cationic®®®” polymerization of
comonomer(s) followed by ROTEP of lactide from the
hydroxyl-terminated end(s). Orthogonal initiation offers
another method of synthesizing block polymers with chemi-
cally dissimilar monomers and different polymerization
methods. Initiator molecules with distinct initiation sites
have been used to create block polymers combining ROTEP
of lactide with, for example, atom transfer radical polymer-
ization (ATRP), reversible addition—fragmentation chain
transfer polymerization (RAFT), ring-opening metathesis
polymerization (ROMP), and nitroxide mediated polymer-
ization (NMP) (Figure 3). Albanese et al. describe the
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Figure 3. Example orthogonal initiators that have been explored to
combine distinct polymerization methods to create a diverse array of
PLA block polymers, including ATRP-ROTEP,”® RAFT-ROTEP,”
ROMP-ROTEP,*® and NMP-ROTEP.”®

synthesis of PLA-b-poly(y-methyl-¢-caprolactone)-b-PS ABC
triblock polymers with 2-hydroxyethyl-2-bromoisobutyrate,
which can serve as the initiator for ROTEP followed by
ATRP.”® Importantly, the ATRP chain end needs to be stable
under ROTEP conditions, allowing for the ROTEP of y-
methyl-e-caprolactone (yMCL) then lactide which is followed
by the polymerization of styrene under ATRP conditions.”’
Yildirim ef al. introduced sequential ROTEP-RAFT polymer-
ization using a hydroxyl-containing chain transfer agent
allowing for the ROTEP of lactide followed immediately by
RAFT of 2-hydroxyethyl acrylate without any intermediate
purification or deprotection steps.”’ The combination of
ROTEP and ROMP has been accomplished by using a
dihydroxy alkene-containing initiator via either a ROTEP-first
procedure,”> or ROMP-first method using poly-
(cyclooctene).*® Another example is the combination of
NMP and ROTERP in the synthesis of PS—PLA block polymers
using a hydroxyl-functionalized TEMPO molecule as the
initiator.”” Finally, we highlight the work of Bolton and Rzayev

https://doi.org/10.1021/acs.biomac.5c00161
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who describe the three-step process of synthesizing PS-b-
poly(methyl methacrylate)-b-PLA triblock bottlebrush poly-
mers via sequential ATRP, RAFT, and ROTEP, through the
use of a macroinitiator with orthogonal, albeit protected,
initiation sites.”* The combination of ROTEP with alternative
controlled polymerization methods showcases the variety of
well-defined block polymers that can be synthesized with PLA
segments.

In addition to block polymerization via sequential monomer
addition as described above, there have also been efforts to
explore the synthesis of PLA block polymers using one-pot,
mixed monomer feedstocks of lactide and comonomer(s). The
ability to combine ROTEP of lactide with alternative
polymerization methods via switchable catalysis is a powerful
platform to synthesize block and multiblock polymers from
mixed monomer feedstocks. In 2014, the Williams group
pioneered such switchable catalysis, which describes the
process of creating block polymers through a catalyst system
that can ‘switch’ between distinct polymerization mechanisms,
primarily ring-opening copolymerization (ROCOP) and
ROTEP (Figure 4).7>7% Since then, there have been many

ROCOP/ROTEP switchable catalysis
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Figure 4. Switchable catalysis methods used to polymerize PLA block
polymers.

investigations into switchable catalysis as a means to synthesize
PLA block polymers. In one of the first examples, Stof8er et al.
demonstrated the block copolymerization of propene oxide/
phthalic anhydride and lactide using an aluminum salphen
catalyst.”” They created multiblock polymers through
sequential addition of monomer mixtures, where after each
addition, ROTEP of lactide occurred only after high
conversion (>95%) of phthalic anhydride.”” Further, they
found that the monomer insertion of the ROCOP step is zero
order, while the lactide insertion is first order, explaining why
ROCOP proceeds first. While many switchable -catalysis
methods rely on metal catalysts,’® Geng et al. developed a
switchable organocatalyst, a boron-containing thiourea, to
catalyze the sequential pol(ymerization of propene oxide/
carbonyl sulfide and lactide.”® Only ROCOP of propene oxide
and carbonyl sulfide was found to occur in the mixture of all
monomers, while only ROTEP of lactide was found to occur in
the absence of carbonyl sulfide.”® Around the same time that
the Williams group introduced switchable catalysis between
ROCOP and ROTEP, the Diaconescu group explored block
polymerization of lactide and e-caprolactone using redox-
switchable titanium and zirconium catalysts.”® They found that
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in the presence of both lactide and e-caprolactone, a titanium-
thiolfan complex would almost exclusively polymerize lactide
to modest conversion (58%); whereupon the addition of an
oxidant, the titanium catalyst would then polymerize almost
exclusively e-caprolactone, again to modest conversion (18%).
Byers and co-workers also applied the idea of switchable
catalysis of lactide to redox-switchable iron catalysts.””*' They
demonstrated that given mixtures of lactide and cyclohexene
oxide (CHO), block polymers of the type AB and BA can be
synthesized using an in situ redox switch, with block order
dictated by the oxidation state of the iron catalyst.*” This same
catalyst can be used to create triblock polymers PLLA-b-
poly(tetrahydrofuran (THF)-co-CHO)-b-PLLA by switching
the redox catalyst between Fe(Il) and Fe(Ill) oxidation
states.””

Polymer architecture plays an important role in polymer
properties, and the ability to create PLA block polymers with
well-defined architectures using ROTEP has been the subject
of many investigations. The simplest linear examples of diblock
and triblock structures can be synthesized via mono- or
difunctional small molecule initiators. Linking these di- or
triblocks together with difunctional chain extenders allows for
the creation of linear multiblocks.””””**** Accessing star block
architectures is simply a matter of inc_reasin§ the number of
hydroxyl groups on a given initiator.””**™*° More complex
block architectures, such as miktoarm stars and H-shaped
polymers (Figure S), require more synthetic manipulation but
uncover unique polymer properties; here, we highlight some
recent innovative approaches.

S

linear multi-blocks

& G

miktoarm star-block H-shaped-block

star-block

Figure S. Representation of some of the various architectures
explored in PLA block polymers.

A miktoarm star is characterized as a star architecture with
one or more chemically distinct arms, which can often pose a
synthetic challenge.*” An approach taken by Blankenship et al.
utilized a method termed uSTAR,* which is a type of grafting-
through mechanism that allowed the creation of miktoarm
stars with easily varied numbers of arms.*” The synthesized
polymers consisted of an average of three, six, or nine PYMCL-
b-PLLA arms attached to one PLLA arm. The authors found
that increasing the number of arms improved the strength,
toughness, and recovery of the resultant thermoplastic
elastomers. In contrast to the star architecture, which has

https://doi.org/10.1021/acs.biomac.5c00161
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Table 1. Compiled Values of x,4(T) Fitting Parameters for PLA and the Listed Co-Blocks”

co-block, abbreviation a (K) p determination method Vi (%) ref.
poly(ethylene oxide), PEO OR poly(ethylene not given  [—0.161, —0.048], dependent on PEO melting point depression” N/A 97
glycol), PEG end-group
poly(methyl methacrylate), PMMA -2 0.01 RPA fits, binary interaction 118 98
model”
poly(allyl glycidyl ether), PAGE 68.8 + 9.4 —0.212 + 0.030 RPA fit” not 99
given
poly(caprolactone), PCL 28.7 £2.0 —0.03 £+ 0.005 rheologyb 118 100
poly(y-methyl-e-caprolactone), PYMCL 51.6 £21 —0.07 + 0.01 rheology 118 101
poly(6-methyl-¢-caprolactone), PGMCL 61.2 —-0.1 rheology 118 102
poly(e-decalactone), PDL 69.1 £92 —0.072 + 0.026 rheology 118 103
poly(styrene), PS 98.1 —0.112 rheology, SSL spacings” 185 35
poly(butadiene), PB (36 mol % 1,4 units, 64 mol % 161.6 —0.223 rheology 118 104
1,2 units)
poly(1,4-isoprene), PI 230 + 60 —0.38 + 0.14 theology 110 105
poly(cyclohexylethylene), PCHE 222 + 15  —0.29 + 0.03 rheology 118 106
poly(trimethylsilylstyrene), PTMSS S1.3 0.29 RPA fit 118 107
poly(ethylene), PE 150.8 not given solubility parameters” not 108
given
poly(11-aminoundecanoic acid), polyamide 11, 426 + —0.90 + 0.01 rheology 118 82
PAIl 4.81
poly(menthide), PM 364 —0.50 SSL spacings arb. 109
poly(ethylene-alt-propylene), PEP (90—93 mol % 445 —0.64 rheology 174 110
1,4 units
poly(dimethylsiloxane), PDMS 360 0.21 SSL spacings 118 111

“The values are ordered low-to-high when evaluated at T = 298 K. Co-block abbreviations are used throughout the remainder of the Perspective. %y
determination methods are elaborated on in the Supporting Information.

only a single branch point, the H-shaped or dumbbell polymer
consists of two branch points and is of interest due to its
unique rheological properties. However, they can be difficult to
synthesize in a well-defined manner.”””" Recent advances have
shown that end-functionalizing a telechelic linear polymer
chain with two or more hydroxyl groups enables subsequent
ROTEP of lactide.”’ ~** While these are just a few examples of
architecturally interesting PLA block polymers, it is important
to note that varying architecture can have dramatic effects on
both the self-assembly behavior of the block polymers as well
as the ultimate mechanical properties. The ability to create
architecturally diverse polymers is a key aspect in the
development of designer macromolecules.

B PLA BLOCK POLYMERS AS MESOSTRUCTURE
DISCOVERY PLATFORMS

Block polymers’ appealing hybrid properties arise directly from
their nanocomposite-like mesostructures. Moreover, the study
of block 6polymer mesostructure has blossomed into a rich
subfield.** Investigations of this type typically aim to create
new morphologies through chemical or architectural manipu-
lations; expand design spaces or processing methods for
morphologies useful for specific applications; or fabricate
devices evaluating such new compounds in these applications.
Especially over the last two decades, PLA block polymers have
offered a particularly useful platform for mesostructure studies,
an important aspect of their scientific merit to which we have
devoted this section.

As synthetic efforts expand PLA’s co-block scope, each new
block introduced interacts differently with PLA by virtue of its
distinct repeat unit structure, which presents opportunities for
research on block polymer mesostructures. The interaction
parameter, y, encodes the strength of block interactions: a
higher y value signals a more unfavorable interaction. For
convenience, most experimentalists use an operational
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definition, y.; which encompasses the excess free energy of
- .46,
mixing for co-block pairs:**”

(MG _
fAkaBT

(AR, — T(AS)S,
fAfB kBT

et A-B (T) =

a
r*f )
where f, and fj are the volume fractions for blocks A and B,
and a and f respectively encapsulate the enthalpic and
entropic contributions to y. y.z(T) is estimated by fitting
models to data obtained from experiments that manifest the
excess properties of block mixing. Multiplying the y.4(T) for a
block polymer’s constituent blocks by its overall volume-
referenced degree of polymerization (N) produces its
“segregation strength,” yN. Self-consistent field theory
(SCFT) can then be used to generate block polymer
morphology maps, which describe equilibrium domain
morphologies resulting from block—block segregation as a
function of f and yN, and predict order—disorder transition
temperatures (Topr), above which block mixing occurs.”>”
Table 1 lists y.4(T) functions for PLA-(co-block) pairs
collected from the literature. We also note the Hildebrand
solubility parameter (§) for PLA in the Supporting
Information, which allows for estimation of y for many other
co-blocks whose 6 values are known. However, these quantities
are measured indirectly or estimated and generally carry
greater error.

PLA offers unique utility for block polymer ordered
structure discovery. Controlled anionic polymerization of
hydrocarbon monomers such as styrene, butadiene, and
isoprene can easily be terminated with ethylene oxide to
create telechelic hydroxzrl end-groups for subsequent chain
extension with lactide.”® PLA’s rather polar repeat unit
interacts unfavorably (ie, high y) with these anionically
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polymerized blocks and their hydrogenated derivatives. A large
x provides a large yN even at low-to-moderate molar masses
(N), which encourages rapid self-assembly of equilibrium
morphologies. In contrast, a lower y would require much larger
blocks for an equivalent yN, which tends to incur kinetic
barriers to ordering due to entanglements slowing chain
diffusion. Hence, PLA offers a broad range of co-blocks for
extremely well-defined, rapidly self-assembling block polymers.
Here, we highlight key examples of this useful strategy.

In their simplest forms, block polymer segregation theories
assume monodisperse chains, while even the most controlled
polymerization schemes produce chains with molar mass
dispersity. Hence, controlled manipulation of block dispersity
offers valuable insight for theoretical refinements. Lynd and
Hillmyer accomplished this with a series of PEP-b-PLA diblock
polymers in which they exploited the reversibility of lactide
ROTEP to tune the PLA block’s dispersity (Pprs). By
increasing the reaction duration after the equilibrium
conversion was achieved, they allowed more chain length
scrambling through random monomer addition and removal at
active chain ends, increasing Ppra' ' In symmetric (fy = f &
0.5) diblocks, the lamellar domain spacings increased with
Dpa compared to the monodisperse prediction from the
strong segregation limit (SSL). The most strongly segregated
diblocks experienced less domain swelling, though their
domain spacings were more sensitive to Dp;,. Additionally,
increasing Pp;, at constant fp, changed the ordered
morphology for more weakly segregated diblocks. When PLA
was the minority domain, increasing Pp;, increased the
curvature toward PLA (LAM — GYR — HEX), while the
opposite was true (GYR — LAM, HEX — GYR) when PLA
was the ma}'ority domain. These results supported contempo-
rary theory ' that larger chains, which are more abundant in
polydisperse blocks, can stretch to fill space inside curvature
with less entropic penalty than short ones, encouraging
spontaneous curvature toward more polydisperse blocks.
Furthermore, they observed a composition-dependent shift in
(¥N)opr with increasing Pppa: (YN)opr decreased at low fp 4,
signifying stabilization of ordered morphologies, but increased
at high fp,, indicating destabilization, the latter in contra-
diction with SCFT predictions. Schmitt and Mahanthappa
later investigated the effects of “B” midblock dispersity in PLA-
b-poly(1,4-butadiene)-b-PLA (LBL) triblock polymers. In a
compositionally symmetric LBL library (f = 0.49—0.54), the
tendency for curvature toward the polydisperse B blocks (D =
1.7—1.9) shifted the LAM phase window to higher f5 than for
more monodisperse B blocks (Dy < 1.1)." Shortly thereafter,
they explored a wider compositional range (fg = 0.26—0.95),
finding that in addition to shifting ordered phase windows to
higher fg, increasing Dy globally increased the segregation
strength required for microphase separation (yN > 27) relative
to the monodisperse case (yN > 17.9), mirroring Lynd and
Hillmyer’s high-fpr s result."’>"'® This was ascribed to
enhanced concentration fluctuations occurring at low N
further strengthened by the compositional dispersity entailed
by high Dy, which destabilized ordered morphologies.

Sparsely branched architectures offer other means of
controlling domain interfacial curvature. Ma et al. synthesized
PDMS—PLA block oligomers while modulating the architec-
ture from 3(AB) (diblock arm star) to 3AB (linear-branched)
to 3(AB,;)B, (homodiblock miktoarm star), with A = PDMS
and B = PLA and f; 4 ranging from 0.41 to 0.57 (Figure 6).""”
Consistent with SCFT predictions,"'® the 3(AB) had similar
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Figure 6. Changing the proximity between the branching node and
block junction modulates domain interfacial curvature in PDMS-b-
PLA block oligomers.1 17

phase behavior to that predicted for the AB diblock arms —
namely, all microphase separated samples adopted a LAM
morphology. With the block junctions located at the branching
point in linear-branched 3AB, interfaces curved away from the
PDMS chains to reduce chain crowding, remarkably enabling
PLA cylinders to persist up to fp, = 0.55. In 3(AB;)B,, the
small spacer between the block junctions and branching point
relieved packing frustration in the discrete PLA domain. As a
result, 3(AB,)B, assembled a higher-curvature, sphere-packing
Frank-Kasper A15 morphology with fp; 4 = 0.4, and its HEX
stability limit was further deflected to fp; 4 > 0.57. These results
validated more recent SCFT investigations into miktoarm star
polymers.''” Meier-Merziger et al’s “super-H-shaped”
(PLLA);-b-PI-b-(PLLA); block polymers showed similar
effects with fp;;, ranging from 0.16 to 0.28. Desgite the
conformational asymmetry between PLLA and PL’*'*° which
would tend to shift ordered phase boundaries to higher f e
the branching-induced resistance to curvature in the PLLA
domain produced HEX/LAM coexistences for most samples
and even solely LAM for fp; 4 = 0.28. In a similar vein, with a
more conformationally symmetric block pairing, Pitet et al.
achieved a LAM morphology with fp 4 = 0.09 in (PLA),-b-
poly(cyclooctene)-b-(PLA),. >

Much more densely branched PLA-containing bottlebrush
polymers have yielded surprising morphological discoveries
through experimentation with frustration, meaning the
relationship between blocks’ topological connections and
their chemical compatibility. Bolton and Rzayev’s PS—
PMMA—-PLA triblock bottlebrush polymers separated the
incompatible PS and PLA (yps_pra = 0.23 at 25 °C) along an
acrylate backbone with a “mutually agreeable” PMMA brush-
block (¥ps—pania = 0-032, Zonmiapra = 3.3 X 1072 at 25 °C).”*
Despite sufficient yN for predicted separation, the PS and
PMMA brush-blocks mixed and separated from PLA,
producing an unexpected lamellar morphology. Cui et al
more recently synthesized similarly nonfrustrated'”” ABC
triblock bottlebrushes (yac > yap & ypc) featuring a PEP—PS-
PLA brush-block sequence.'”’ They observed a novel
cylinders-in-undulating-lamellae  (CUL) morphology, with
PLA cylinders located between undulating PEP lamellae in a
PS matrix. CUL was thermodynamically stable within a
surprisingly wide PS-rich compositional space. The Fddd
network phase was absent from the morphology portrait
compared to linear triblock analogues, while the core—shell
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GYR phase remained, which the authors attributed to a
reduction in effective PEP—PLA contact caused by the stiffness
of the triblock bottlebrush backbone.

The accessibility of optically enriched lactide feedstocks
makes the isotactic PLAs useful for studying block polymer
crystallization. Zhou et al. created a series of PLLA-b-
poly(butylene terephthalate)-b-PLLA triblock polymers with
a 1.6 kg mol™' midblock and PLLA weight fraction (wpy,)
ranging from 0.81 to ~0.99."** Increasing wpp;, suppressed
midblock crystallization, while the PLLA crystallization
temperature and overall crystallization rate peaked when the
PLLA arm molar mass was ~20 kg mol ™', possibly reflecting an
interplay of insufficient thermodynamic drive for crystallization
in the short PLLA blocks and entanglements in the longer
PLLA blocks slowing crystallization kinetics. As homopol-
ymers, PLLA and PDLA form crystal lamellae helically twisted
along the lamellar plane (perpendicularly to chain axis), with
chain stereochemistry controlling the twisting direction.'”
Maillard and Prud’homme ascribed this effect to the
homochiral backbone creating a stress imbalance across the
lamellar fold surfaces.'”® In their study of PS-b-PLLA diblocks
(frLLa = 0.65) with polarized optical microscopy, Chao et al.
observed banded spherulites, in which periodic birefringence
extinctions appear along the spherulites’ radial axes, diagnostic
of the same lamellar twisting phenomenon.'*® The twisting
occurred over a wider range of crystallization temperatures
than for PLLA homopolymer, and when measurable for both
species, the helical pitch length was considerably smaller for
PS-b-PLLA. The authors reasoned that the microphase
separated PS coils enhanced the homopolymer’s lamellar
stress imbalance, encouraging tighter lamellar helices.

After the discovery of helical domain morphologies in PS-b-
poly[isocyano-di(amino acid)]diblocks,"”” the comparative
synthetic ease of installing PLLA or PDLA co-blocks propelled
PLA block polymers to the forefront of chiral phase discovery.
Huang and co-workers first documented helical PLLA domains
with 2-fold symmetry, the so-called “H*” phase, in PS-b-PLLA
diblocks with fpi;4 = 0.35."*" Later, they expanded the phase
window, observing H* from 0.32 < fp1;4 < 0.39, as well as its
instability at long annealing times.'”” They measured a higher
persistence length for PLLA than for atactic PLA, suggesting
that PLLA’s helical steric hindrance increased its chain rigidity.
From this result, they speculated that the PLLA conformations
near the interface that would minimize self-hindrance
encouraged relative twisting among adjacent chains, leading
to H*. Circular dichroism and fluorescence spectroscopies on
PS-b-perylene-b-PLLA in the H* phase later directly evinced
the twisting at the block junction and resultant domain layer
shifting necessary to produce H*.'*’ More recently, by
comparing ABC triblocks PS-b-PEO-b-PLLA (B and C
miscible) and PS-b-poly(4-vinylpyridine)-b-PLLA (B and C
immiscible), Yuan et al. found that the chirality effect could
transfer from PLA to PEO with a short PEO midblock to
create the H* phase with chain-mixed domains.”' Addition-
ally, with fpia & 0.5, PI-b-PS-b-PLLA and PI-b-PS-b-PDLA
triblocks formed a novel single/double GYR coexistence in
which the PLA single gyroid domain’s chirality was controlled
by the choice of PLLA or PDLA.">* Together, the ongoing
study of isotactic PLA-containing block polymers’ crystal-
lization and domain helicity has solidified the understanding of
chain-to-superstructure chirality information transfer.
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B PLA BLOCK POLYMERS IN THE MATERIAL
ECONOMY

This section details the mechanical properties accessible by

PLA block polymers in order of increasing PLA volume

fraction (Figure 7). PLA block polymers that have a minority

resilient elastomers
& adhesives

tough plastics

Figure 7. Schematic representation of block polymers with low and
high fpr4 and potential applications.

volume fraction of PLA (fp 4 < 0.50) can function as pressure-
sensitive adhesives (PSAs) and thermoplastic elastomers
(TPEs). These applications typically require a rubbery (i.c.,
low T,) midblock that serves as a matrix within which spherical
or cylindrical PLA domains act as physical cross-links. As we
move toward block polymers with a majority fraction PLA
(fpra = 0.50), we begin to access rigid plastic behavior such as
that of PS, poly(ethylene terephthalate) (PET), and high-
density poly(ethylene) (HDPE). While less studied than their
elastomeric counterparts, these materials demonstrate some of
the unique benefits of PLA block polymers within plastics.

Pressure-Sensitive Adhesives. PSAs enable the products
that consumers stick to surfaces. Stickers, sticky notes, stamps,
bandages, tapes, labels, Command products (3M), and a host
of other consumer goods bond to a wide range of substrates
solely under pressure, without relying on solvent evaporation,
temperature changes, or chemical reactions.'”” PSAs exhibit
“permanent tackiness,” wetting substrates on short time scales
and usually with mild pressure. Block polymer-tackifier blends
make up one class of PSAs. The earliest materials featured PS-
lean, PS-b-PI-b-PS (SIS) or PS-b-PB-b-PS (SBS) triblock
polymers in which glassy, microphase separated PS domains
acted as physical cross-links for the rubbery, matrix-forming
midblock."®* Tackifiers, often low molar mass resins, dilute
midblock entanglements to increase the effective molar mass
between entanglements (M,) and enhance tackiness. The
segregated SIS/SBS nanostructure endows them with superior
creep resistance to other, one-phase commercial PSAs,
including rubber-tackifier composites and acrylate copolymer-
tackifier blends."**

PLA has found use as a sustainable replacement for the PS
block in PSAs, as it is also glassy at room temperature and has
similar stiffness characteristics. Shin et al. first reported a
renewable PSA including PLA-b-PM-b-PLA triblocks and a
Sylvalite rosin ester tackifier with best adhesive properties (60
wt % triblock) competitive with duct, paper, and electrical
tapes.">> The hydrolytic degradability of the triblock polyester
also offered a possible solution for the accumulation of residual
adhesives or “stickies” in the pulp and paper recycling
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industry.">® Lee et al. later expanded the midblock scope,
combining as low as 35 wt % PLLA-b-PDL-b-PLLA triblocks
with rosin ester and epoxidized soybean oil plasticizer to
achieve peel and shear resistance properties between Scotch
tape and duct tape.*” The limits of tackifier miscibility were
clarified for a PLA-b-poly(f-methyl-6-valerolactone)-b-PLA
triblock, which could solubilize only up to 50 wt % Sylvalite
before macrophase separating.'*® Linear viscoelastic analysis,
cross-referenced with Chang’s window analysis,"** identified
these materials as competitive candidates for general use or
easily removable PSAs. Additionally, this study showed that
controlled rheological experiments could rationalize trends
observed in standard PSA tests: uniaxial extension for peel
adhesion, small-angle oscillatory shear for loop tack, and shear
creep for shear resistance. Xu et al. recently described a library
of PLLA-b-poly(alkyl-5-lactone)-b-PLLA triblocks that could
achieve commercially competitive peel strength without
tackifier."** The lack of tackifier enabled chemically recyclable
PSAs through staged reactive distillations, which sequentially
recovered PLLA as ethyl lactate and pure midblock lactone
monomer, respectively.

Kim et al. introduced cashew shells as another renewable
feedstock for PLA-containing PSAs."*' They used cardanol, a
downstream product of the cashew industry, to produce
poly(pentadecylcaprolactone)s (PPDCL) as midblocks, desir-
able for their large M, which in principle offers greater intrinsic
tackiness. With high tackifier loadings (60—80 wt %), these
PLA-b-PPDCL-b-PLA (“LPL”) PSAs displayed excellent
properties, surpassing duct tape in peel and loop tack force
and matching office tape in shear resistance (Figure 8). One

cashew shells
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Figure 8. LPL triblock synthesis scheme and adhesive properties.'*'

LPL with semicrystalline PLLA end-blocks resisted shear
failure for over 6000 min, whereas similar triblocks with atactic
PLA end-blocks failed earlier, highlighting the importance of
hard domain crystallinity for shear resistance. Interestingly, the
crystallinity in the long PPDCL alkyl chains enabled
temperature-switchable properties. Briefly heating the substrate
to 38 °C to melt PPDCL side-chains enabled better adhesion,
a promising result for body-temperature activated adhesives,
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while cooling before debonding promoted adhesive failure by
crystallizing the side-chains. Advantageously for waste manage-
ment, the LPL triblocks were also readily degraded in acidic
THEF.

In a similar vein, Liang et al. prepared PSAs by blending
renewable tackifier with low-fp;, PLLA-b-PyMCL-b-PLLA
triblock polymers.'** Solvent casting these materials led to
weakly microphase separated PLLA domains, which produced
limited peel and loop tack forces. Annealing the samples in two
stages — one stage at 170 °C to form better defined PLLA
domains and a second at 100 °C to crystallize the PLLA —
increased the peel strength 3-fold, maximized shear resistance,
encouraged desirable adhesive failure, and bolstered the
adhesive characteristics over long aging periods. The triblock
was fully degraded in aqueous base over 15—25 days, offering a
sustainable end-of-life pathway.

Thermoplastic Elastomers. TPEs combine the process-
ability of thermoplastics and the rubbery elasticity of cross-
linked elastomers at room temperature. These materials are
commonly ABA triblock polymers featuring hard A end-blocks
(high T, or T,,) flanking a rubbery B midblock (low Tg).143
The SIS and SBS triblocks described in the previous section
were the original commercially successful variants, and were
introduced to the commercial market as components of leisure
footwear under the name Kraton by the Shell chemical
company in the 1960s.” To this day, styrenic block polymers
such as SIS and SBS remain the most produced TPEs
according to a report by Grand View Research.'** These
styrenic materials are desirable for their high tensile strength
(>20 MPa), high extensibility (>1000%), transparency, and
robust elastic recovery behavior. Many researchers have taken
advantage of the material similarities between PS and PLA to
develop a new generation of TPEs with PLA end-blocks,
starting in the late 1990s. These early TPEs featured PDMS,'**
poly(isobutylene),”” and PI°” midblocks. Over the past three
decades, these PLA-based TPEs have progressed immensely.
As demonstrated by the works highlighted in this section,
recent PLA-based materials compete with these incumbent
TPEs in terms of tensile strength and extensibility (Figure 9),
while maintaining elastic-recovery behavior and transparency.
Further, semicrystalline PLLA-based TPEs exhibit a higher
upper service temperature than styrenic TPEs (T,ps & 100 °C,
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Figure 9. Compiled tensile properties of TPEs with PLA-based hard
segments and various midblocks compared to commercial SIS and
SBS, adapted from a report by Gregory et al.'** CL/LA = poly(e-
caprolactone-co-(+-lactide))
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Topria & 160 °C), broadening the usage temperature range
for this class of materials.

Substituted caprolactones have been extensively explored as
the rubbery midblock within PLA-based aliphatic olXesters.
PM,*1% PEMCL,'® PDL''®> and PyMCLS3/055010L147
have each been explored as a rubbery counterpart to PLA
within TPEs, with the latter commanding much of the focus to
date (Figure 10). The desirable traits of PYMCL include its low

M

6MCL eDL yMCL

Figure 10. Selected substituted caprolactones used as the rubbery
midblock within PLA block polymers as TPEs. Monomer
abbreviations can be found in Table 1.

entanglement molar mass (M, = 2.9 kg mol™),"%" its
degradability,'**'*” and low cytotoxicity. °° Further, its
monomer yMCL can be sourced from pam—cresol,53 which
in turn can be derived from renewable resources. In 2017,
Watts et al. published important initial work exploring PYMCL
within PLA-block polyesters, inspiring a host of related PLA-b-
PyMCL research in the time since, much of it probing the
mechanical and morphological effects of architecture.'"’
Liffland and Hillmyer studied the impact of the star
architecture within PLLA-b-PYMCL block polymers. In this
system, the authors found that increasing the number of arms
from two (linear) to four or six arms while keeping the overall
molar mass the same resulted in higher ultimate tensile
strengths (31—33 MPa) and Young’s moduli (4—5 MPa), with
only slight decreases in the elongation at break (~1400%).%*
Blankenship et al. expanded the architectural portfolio with a
library of PLLA-(PyYMCL-b-PLLA), A,;(BA,),-type miktoarm
stars. Adopting a miktoarm star architecture deflects block
polymer phase boundaries, allowing for a higher fp;;, while
maintaining discrete spherical or cylindrical domains, which
are necessary for ideal TPE performance (i.e., no plastic
deformation). Their PLLA-(PyMCL-PLLA), stars resisted
plastic deformation with fp;4 up to 0.52, which would
otherwise only be expected from network or lamellar
morphologies.”” Another architectural variant of PLLA-b-
PyMCL based materials explored by Fournier et al. utilized a
graft architecture, with a PYMCL backbone and PLLA arms.
They achieved remarkably tunable properties by varying the
grafting density, graft length, and wpy;,, with a high grafting
density proving to be most crucial attribute for robust
mechanical properties.'*”

One of the most important properties of TPEs is their elastic
recovery behavior, which can be measured through hysteresis
testing and stress relaxation analyses. These experiments
emulate how a material would respond to external stress
during typical usage. In hysteresis testing, a material’s
nonrecoverable strain, or creep, after repeated load is
measured, while stress relaxation analyses measure a material’s
time-dependent stress response to an applied strain. TPE
applications require minimal creep and stress relaxation. Linear
TPEs can perform well in both categories, but there are ways
to reduce both the strain hysteresis and stress relaxation. One
involves using semicrystalline PLLA as the end-block instead of
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amorphous PLA."*'"" Building off this idea, Liffland et al.
installed stereoblock PLA (that is, PLLA-b-PDLA) as the end-
blocks within four-arm star polymers with a PYMCL midblock.
Compared to the stars with only PLLA as the end-blocks, the
stars with PLLA-b-PDLA end-blocks exhibited improved
elastic recovery and retention of elasticity as measured by
hysteresis and stress relaxation analyses respectively, while
maintaining ultimate tensile strengths and elongations."”" In
another attempt to improve the elastic recovery of the PLLA-b-
PyMCL based materials, Albanese et al. synthesized PLLA-b-
PyMCL-b-PS ABC triblock polymers. Whereas the ABA
architecture permits mechanically weak loops with both hard
end-blocks anchored in the same domain, this ABC
architecture forces the PyMCL to bridge separate hard
domains due to the immiscibility of PLLA and PS (Figure
11). In hysteresis testing, the authors reported up to 98%
recovery over 10 cycles for the ABC system, compared to 90
and 95% for the ABA and CBC type materials.”’

‘(‘WS

ABA: bridge & loop
formation possible

ABC: only bridge
formation possible

Figure 11. Possible polymer chain configuration of ABA- (left) and
ABC- (right) style chains demonstrating the loop-forming ability of
ABA-style chains and the inability of the ABC-style chains to do
likewise.”

PDL has similarly attracted interest for use in TPEs. Lee et
al. studied the effect of the star architecture on TPE
performance of (PLLA-b-PDL), block polymers while
maintaining a constant overall M, and fp;;,. By increasing
the number of arms from two (linear) to three, four, or six, the
authors were able to demonstrate an increase in Young’s
moduli and tensile strength at the expense of the elongation at
break.*® The authors attributed the enhanced mechanical
performance to the formation of more numerous, smaller
PLLA domains embedded within the rubbery PDL matrix,
which serves to increase the amount of physical cross-linking
between chains.’® As the molar mass of TPEs increases,
mechanical properties typically improve, but the Topr
increases. This narrows the processing window, as TPEs are
generally much easier to process above their Tgpr. For
example, Martello et al. found that the multiblock architecture
retained high-molar mass TPE processability by decreasing
Topr- At an overall molar mass of roughly 210 kg mol™, the
PLLA-b-PDL-b-PLLA polymers had an inaccessible Tqpr
while the multiblocks of the same molar mass had a Topp of
140 °C and were injection moldable.'”’

In addition to the substituted caprolactones highlighted
previously, another monomer that has gained interest within
PLA-block TPEs is f-methyl-5-valerolactone (SMVL). Xiong
et al. first made triblock polymers with PLLA end-blocks with a
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rubbery PAMVL midblock. They found high ultimate tensile
strength (28 MPa) and ductility (1720%) for a sample with
frrra = 0.32 and elastlc recoveries exceeding 95% as evidenced
in hysteresis testing.'>> Graft polymers with PAMVL-b-PLLA
diblock arms were later explored by Zhang et al. Compared to
linear PLLA-b-PSMVL-b-PLLA triblocks, the grafts of similar
composition displayed nearly twice the elongation at break.'>
Siehr et al. further explored PAMVL-b-PLA based materials for
their biomedical applicability. Seeking implantable devices and
tissue engineering scaffolds, the authors synthesized very soft
PLA-b-PSMVL-b-PLA triblocks and explored their mechanical
properties both when dry and when swelled with phosphate
buffered saline. They found low levels of tensile set (10—13%)
after prescribed time under extension, with full recovery after
40 min for both wet and dry conditions.'** Schiittner et al. also
explored PLA-based block polymers for their applications as
tissue engineering scaffolds. They used a novel biobased
polymer, poly(citronellyl glycidyl ether carbonate) derived
from CO, and citronellol, as the rubbery midblock. After chain
extension with (—)-lactide, the polymers exhibited a desirably
low modulus (0.15—-1.0 MPa) and strains at break ranging
from 400—650%, indicating soft mater1als that could be used as
elastomeric tissue engineering scaffolds.'

Highly extensible TPEs find applications in consumer goods,
automotive appliances, and biomedicine. Shin and co-workers
grafted PLLA arms onto a poly(isobutylene) backbone to
create “superelastomers” boasting approximately 2500% strain
at break."”® By adjusting the arm length and thereby also
changing fp;14, they tuned the material properties from tough
and ductile plastics to highly extensible superelastomers.
Highly extensible elastomers were also developed by
Nakayama et al. by way of triblock polymers with PLLA
end-blocks and a midblock comprised of PLA-co-PCL. These
triblocks show high extensibility up to 2800% strain at break
and an ultimate tensile strength of 17 MPa for a sample with
frira = 0.20."7 In TPEs, high extensibility typically comes at
the expense of ultimate tensile strength. However, ongoing
efforts seek to combine these two qualities to create incredibly
tough, strong, and ductile TPEs. One key example of this is the
work accomplished by Zhao et al., whose materials achieved a
maximum toughness of 445 MJ m™~ (Figure 12). Using a PCL-

C/ i; Mg catalyst H)OJ\

one-pot, room temperature synthesis

strain-induced crystallization

incredibly tough, up to 445 MJ m=3

Figure 12. One-pot sequential addition of ¢CL/SVL and (—)-lactide
with a magnesium catalyst to create triblock polymers with a gradient
poly(¢CL-co-6VL) midblock. This adapted figure has been published
in CCS Chemistry 2021, ref 158.

co-poly(S-valerolactone) (SVL) rubbery midblock with PLLA
end-blocks, the authors saw remarkable tensile strength (up to
71.5 MPa) and high extensibility (up to 2100%).">* They
found that while keeping the PLLA end-blocks at a constant
molar mass, by increasing the rubbery midblock length they
were able to improve both strain at break and ultimate tensile
strength, achieving impressively high toughness values. The
authors attribute the toughness of these materials to the strain-
induced crystallization of the poly(eCL-co-6VL) midblock
upon extension, as evidenced by DSC analysis of the polymer
following stretching.

Tough Plastics. By inverting TPE block polymer
composition from low to high fp;,, one produces stiff plastic
materials. So far, PLA-based TPEs have been more frequently
investigated than their plastic counterparts. This is mainly
because commercial TPEs are neat block polymers, whereas
commercial plastics are typically homopolymers or statistical
copolymers. Because these plastics are most often synthesized
in a one-pot fashion, the expanding portfolio of one-pot PLA
block polymer syntheses”"'**~'% particularly benefits PLA
block polymer plastics by demonstrating the accessibility of
scaled production with existing process technologies for the
respective homopolymers. Hence, with these strides in
synthesis and reaction engineering underway, PLA block
polymer plastics offer significant future potential by virtue of
their circularity and value-adding properties.

Theryo et al. produced one of the earliest such materials.
PLA chains were grafted from a rubbery poly(1,5-cyclo-
octadiene-co-S-norbornene-2-methanol) backbone to produce
a stiff, transparent, microphase separated plastic with fp;, =
0.9S. In tensile testing, the material showed a peculiar double
yielding transition and improved ductility (238% ultimate
strain), all while retaining a Young’s modulus of 1.9 GPa and
yield strength of 65 MPa, only slightly reduced from PLA.
Later, Haugan et al. refined the graft architecture with PyMCL-
b-PLA diblock grafts slightly reducing the modulus but vastly
significantly extending the mechanical longevity (Figure
13)."7° Single yielding transitions were observed at low aging
times in the most ductile samples, while the double yielding
documented earlier by Theryo was identified as a craze-then-
yield transition emergent at longer aging times. The longest-
lived specimen retained an ultimate strain of 250% after 210
days of aging and a Young’s modulus of ~1.5 GPa.

169

+ rubbery
graft core

Theryo et al. (2010)
[] 95 vol % PLA

Haugan et al. (2019)
[] 80 vol % PLA

95% PLA strength 71% PLA strength
92% PLA stiffness 59% PLA stiffness

. Crazing at short
aging times

Aging-resistant

Figure 13. Adding a rubbery core block to PLA graft polymers
improves aging resistance while only modestly reducing stiffness and
strength. 169,170
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Appealing to economic feasibility, Lee et al. used
commercially available dihydroxy-telechelic PB as macro-
initiators for LBL triblocks, which they then coupled together
to produce PLA—PB multiblock polymers.'®* The multiblock
architecture improved toughness from PLA’s typical 1-2 MJ
m™ to 9—170 MJ m~>, though at the expense of Young’s
modulus and with a significant trade-off between toughness
and PLA content. Mannion et al. observed a similar
improvement when coupling PLA-b-PDL-b-PLA triblocks
and (PDL-b-PLA), star-blocks into linear and branched
multiblocks, respectively.'”" The branched multiblocks strain-
hardened in uniaxial extension of the melt, a desirable attribute
for processability at scale. Panthani and Bates began probing
the combination of PLLA crystallinity and toughness enhance-
ment in a structurally analogous system, studying a PLLA-b-
poly(ethylene-co-ethylethylene)-b-PLLA (LEL) triblock and its
chain-extended multiblock derivative.'”* The discrete LEL was
brittle like the atactic LBLs but retained typical PLLA
crystallization rates. Conversely, the LE multiblock showed
far superior ductility (up to 632% ultimate strain) but did not
rapidly crystallize, uncovering another trade-off, this one
between crystallinity and toughness. More recently, Krajovic
et al. surmounted this trade-off in a series of PLLA-b-PyMCL-
b-PLLA triblock polymers.'”> They achieved tensile toughness
values ranging from 63—113 MJ m™> with up to 55% PLLA
crystallinity, enabling heat distortion temperatures (HDTs)
exceeding those of PS, PE, and poly(propylene) (PP).

Zhang et al. published two studies detailing a broader scope
of controlled architectural and block identity variations for
optimizing properties. In the first, SMVL and (—)-lactide were
sequentially grafted from a hydroxypropyl methylcellulose
(HPMC) backbone to produce PAMVL-b-PLLA diblock graft
polymers with fy;;, ranging from 0.3 to 0.7.">° This platform
offered tunable (and inversely correlated) Young’s modulus
and ductility. Interestingly, at fixed fp; ;4 = 0.7, doubling the
length of the HPMC backbone doubled ductility without
sacrificing strength. In the second, Zhang separately varied the
backbone length and flexibility, grafting density, and side-chain
length and composition.””” We summarize the key trends here:
(1) longer side-chains are better with fixed backbone length
and side-chain composition; (2) strength correlates with fp; 4
for fixed backbone length; (3) a flexible backbone favors low
grafting density, while a rigid backbone favors high grafting
density; and (4) short, flexible backbones are best across
compositions, while long, rigid backbones are best at fp;, =
0.7. These works offer opportunities for future study of the
deformation mechanisms underlying these design principles.

Recent investigations have demonstrated more scalable
routes to PLA block polymer plastics with excellent properties.
Mulchandani et al. synthesized PLLA-b-PCL-b-PLLA and
PDLA-b-PCL-b-PDLA triblocks, first in solvent on small scales
and then in a solvent-free, one-pot, two-stage reaction on a
500g scale, removing residual lactide through sublimation.'”
The triblocks displayed high toughness (52—160 MJ m™),
with one specimen notably reaching 700% ultimate strain and
36 MPa ultimate stress. Blending the triblocks improved PCL
and PLLA or PDLA crystallinity owing to SC formation
without appreciably affecting mechanical properties. Looking
beyond melt-phase synthesis, Hong et al. used room
temperature ball-milling to mechanochemically install atactic
PLA end-blocks on a PA11l midblock, obtaining up to 98%
conversion and 90% yield on a 20 g scale.®” Then, they
coupled these triblocks into linear multiblocks with a
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diisocyanate, again through ball-milling. Though the aging
time was not reported, the resultant multiblock plastics
performed very well, lacking the typical trade-off between
ductility and strength while retaining PLA’s yield strength
(Figure 14). Finally, Dong et al. deconstructed commercial and

1 0 )
1 | NH '
1 H.N7T ’g 1
N I LS8 /
ball miling | |- '2ctide @
91 2.MDI ©
(PLA-b-PA11-b-PLA),

Figure 14. PLA—PA11 multiblock polymers synthesized through ball-
milling show outstanding combinations of strength and ductility.*”

postconsumer PCL and poly(butylene adipate-co-terephtha-
late) (PBAT) into controlled telechelic fragments and
transesterified them into commercial PLLA, forming triblock
polymers.'’® The obtained molar masses were less than 30 kg
mol™!, prompting diisocyanate-mediated coupling. The
resultant multiblocks plastics exhibited low strengths (8—18
MPa) but extremely high ductilities (820—1150% ultimate
strain) even greater than those typical of HDPE.

Blend Compatibilizers and Standalone Tougheners.
PLA’s brittleness has spurred decades of research aiming to
enhance its toughness to commercial benchmarks. Whereas the
feasibility of neat block polymers as standalone plastic products
depends on the scalability of developing chemistries, blending
PLA with rubber is likely the most economical approach. PLA
block polymers can, however, enhance these blends as
compatibilizers. Due to the positive y for most polymer pairs
and their inherently low entropies of mixing, blends tend to
macrophase separate into large droplets of dispersed phase
within a host matrix (in this case PLA)."”” Block polymer
compatibilizers incorporate a block of both the dispersed and
host species, prompting localization at the droplet interfaces
and increasing interfacial adhesion through coentan%lement
and/or cocrystallization with the blend components."

More than 20 years ago, Anderson and Hillmyer explored
these concepts in 80/20 PLLA/PE blends compatibilized with
diblock polymers.'”® Co-crystallization of the diblock with the
dispersed phase drove interfacial adhesion improvements.
However, this was only helpful for toughening with a soft
linear low-density PE (LLDPE) dispersed phase, which was
posited to undergo cavitation to achieve high impact strength
(48—75 k] m™2). On the other hand, stiff dispersed HDPE was
best paired with PEP-based diblocks that could not
cocrystallize, encouraging droplet debonding for the onset of
matrix yielding. Thurber et al. more recently explored 90/10
PE/PLA blends with an attractive in situ reactive compatibi-
lization approach.'®® Hydroxy-telechelic PE and Sn(oct),
catalyst were mixed into the blend, and the interfacial catalyst
localization enabled rapid transesterification of the HO—PE—
OH into the dispersed PLA backbones, forming triblock
compatibilizers. Although this was a PLA-lean blend, this
compatibilizer synthesis scheme would, in principle, also
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pertain to PLA-rich blends. Hong et al. again employed ball
mill synthesis to produce PA11-PLA diblocks, triblocks, and
linear multiblocks as compatibilizers for 70/30 PLA/PA11
blends.'®" Concurrent PA11l cocrystallization and PLA
coentanglement produced the best properties, including
greater than S0 MPa tensile strength with ultimate strains of
over 400% similar to the neat block polymers.

PLLA/PDLA stereocomplexation has been employed in
PLA enhancement for decades.'®” Though SC use in PLA
blend compatibilization has only recently popularized, it has
quickly emerged as a key design element for the highest-
performing materials on record. For example, in 2019 Wu et al.
prepared 68/20/12 PLLA/EVMG/PDLA blends (EVMG =
ethylene-vinyl acetate-glycidyl methacrylate copolymer elas-
tomer)."*> Mixing the three components in a ternary blend
produced mostly free PDLA chains (i.e., not bound to EVMG),
while first blending EVMG/PDLA to isolate the grafting-to
reaction and then blending the EVMG-g-PDLA product into
PLLA led to mainly EVMG bound PDLA chains. The latter
approach was far superior, transforming the blend morphology
from “sea—island” (droplet in matrix) to cocontinuous PLLA/
EVMG and producing an impact strength of 93.2 k] m™2, an
84-fold improvement upon PLLA.

This theme of interface-anchored PDLA chains inducing
transitions to cocontinuous host/dispersed morphologies has
since hallmarked the state-of-the-art. Chen et al. created fully
biorenewable 70/30 PLLA/PBAT blends compatibilized with
a PDLA/PBAT-based graft polymer made ex-situ as with the
EVMG-based blend."** With careful PLLA-based compatibil-
izer and free PDLA controls, they showed that a thermally
stable cocontinuous morphology resulted specifically from
interface-localized SCs. The best blend displayed an impact
strength of 53 kJ m™2, 350% ultimate strain, and 45 MPa
ultimate stress. By choosing poly(epichlorohydrin) (PECH)
for the dispersed phase in 80/20 PLLA/PECH blends
compatibilized with PECH-b-PDLA diblocks, Chen et al.
combined rubbery dipolar interactions with interfacial stereo-
complexation (Figure 15)."*° With just 5 wt % compatibilizer,
the blend achieved an impact strength of 87 kJ] m™, 568%
ultimate strain, and 53 MPa ultimate stress. Increasing the
diblock loading to 15 wt % reduced ductility to 100% ultimate
strain but produced the highest recorded impact strength for a
PLA-rich compatibilized blend, 96 kJ m~2. Most recently, Li et

Figure 15. Using PECH-b-PDLA diblocks as compatibilizers for 80/
20 PLLA/PECH blends achieves excellent strength, ductility, and the
highest recorded impact strength for a PLLA-based blend."®
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al. created PBAT-g-PDLA for similar use in 70/30 PLLA/
PBAT blends, importantly clarifying that the transition to
cocontinuous morphology is driven solely by in situ SC
formation and not by intrinsic phase inversion processes
governed by the components’ viscosity ratio. *>'®’

Finally, we highlight three examples in which PLA block
polymers were used as standalone tougheners — added directly
to PLA hosts without other dispersed phases. Depending on
the comparative cost of rubber and the block polymer, this
PLA upgrading method could be the most cost-effective at low
loadings of block polymer. Lee et al. grafted PYMCL-b-PLA
diblocks from a hydroxyl-functionalized backbone similarly to
Haugan et al., expanding the architectural scope to 3- and 4-
arm star backbones.'®® After blending into PLA, the linear
backbone with 40 grafts per arm and the 3- and 4-arm star
molecules, each with 10 grafts per arm, were equally effective
tougheners at 5 wt % loading, enabling toughnesses of ~90 MJ
m™ without reducing Young’s modulus. Increasing block
polymer content delayed host aging; ductility was retained for
up to 107 days at 20 wt % loading. Interested in leveraging
SCs, Wang et al. compared blends S—15 wt % composites of
linear PLA-b-PB and PDLA-b-PB multiblock polymers in a
PLLA host."®” At 5 wt %, PDLA-b-PB multiblocks provided
more ductility than the amorphous PLA-b-PB variety and
provided nearly twice the strength at 15 wt %, which was
ascribed to a SC-mediated physical cross-linking effect.
Nattawut et al. used an Sn(OMe), catalyst’s switchable
kinetics for ROCOP and (—)-lactide ROTEP to create
[poly(maleic anhydride)-stat-poly(propylene oxide)]-b-PLLA
polymers.'”® After mild thiol—ene cross-linking over the maleic
anhydride alkene units, at just 2 wt % loading, these additives
achieved a 4-fold increase in the tensile toughness of
commercial PLLA without decreasing Young’s modulus.

B FUTURE PERSPECTIVES

A vision of circularity for the future polymer industry of course
demands scientific strides beyond the advancements cata-
logued here. As the synthetic “bioplastic” nearest to
megatonne-scale production, PLA will continue to play a
major part in driving the transition to renewable and
degradable polymeric materials. Much of the work recounted
here shows what is possible for PLA-based materials, while
many fewer address themes associated with translating
fundamental discoveries into practical, scalable PLA-based
materials. Societal impact further requires moving from what is
practical to what is economically and environmentally
profitable. Thus, technoeconomic analysis and full life cycle
assessment (LCA) are necessary to move technologies into the
marketplace to achieve this 2-fold goal. We conclude our
Perspective calling attention to specific themes that we posit
should receive attention in the coming years given the urgency
of the quest for a circular economy.

Maintaining Sufficient, Market-Conscious Circularity.
The global biomaterials policy landscape has primed demand
for competitive, fully circular materials. The European Union’s
(EU) legislative efforts toward circularity include taxing of
nonrecycled plastic packaging waste,'”" restricting the use of
disposable plastic bags,'”” and banning single-use plastics
lacking renewable substitutes.'”® Moreover, in 2022 the
European Commission enacted a policy framework'”* for
“biobased, biodegradable, and compostable plastics” that
recommends application areas based on life cycle topology —
biosourced, compostable, or both — and references the
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Ecodesign for Sustainable Products Regulation (ESPR) law'”
for guidance on prioritizing renewables investments. The ESPR
therefore provides a useful rubric for determining the market
relevance of ongoing PLA research. Several EU members have
enacted extended producer responsibility (EPR) laws, which
charge plastics manufacturers with postconsumer product
stewardship and incentivize sustainable end-of-life manage-
ment.'”® Across the Asia-Pacific Economic Cooperation, Chile,
Japan, Thailand, and Malaysia have passed similar EPR laws
and defined scope and regulations for bioplastics.'”” Seven U.S.
states have passed EPR or similar laws for plastics, and 10 more
states have EPR bills under consideration.'”®'”” Two recent
reports by the U.S. Office of Science and Technology Policy
and the Department of Agriculture outline an ambitious goal of
90% sustainable replacement of current commercial polymers
within 20 years and a roadmap to growing the biomass supply
for renewable plastics.”*”*%"

Compostability of products that contain PLA is also an
important consideration. In North America, the Biodegradable
Products Institute (BPI) leads third-party certification of
compostability for product labeling and sorting. BPI
certification minimally requires compliance with the American
Society for Testing and Materials (ASTM) standard D6400 for
bulk plastics or D6868 for products incorporating plastics as
coatings or additives. These standards stipulate that nominally
compostable products must (1) demonstrate 90% conversion
of organic carbon to CO, in 180 days under industrial
composting conditions standardized in ASTM D5338;7%% (2)
contain 5 wt % or less of organic constituents not yet verified
under D6400 or D6868, with each constituent not exceeding 1
wt %; and (3) not contain more than 10 wt % of any organic
constituent that fails to satisfy item (1).”°**°* In Europe, the
leading standard EN 13432 requires (1) 90% disintegration in
12 weeks; (2) 90% conversion of organic carbon to CO,
within six months; and a lack of (3) adverse effects on the
composting process, (4) heavy metals, and (S) perturbation of
the chemical characteristics of the resultant compost.””> These
criteria would likely immediately disqualify many of the
materials described in this Perspective, whether for contents of
nondegradable blocks above 10 wt % or, in some cases, for use
of transition metal catalysts that would not be recovered at
scale. Compostability standards constrain plastics manufac-
turers, but compostability certification does not guarantee that
consumers will have industrial compost infrastructure available
or will comply with associated requirements. Analysis of food
waste collected for composting shows 9—13 wt % contami-
nation by improper materials, the plurality being non-
degradable, sin§le—use plastic packaging and household
goods.206 LCA*™ and agricultural experiments’’”*** show
that these contaminants pose ecological and economic harms
to the organismal and human communities involved.

Depending on the technological context, there may be no
realistic sustainability benefit to incorporating PLA with
moderate-to-high weight fractions of nondegradable polymers.
For instance, when PLA is used as a substitute for PS glassy
blocks in TPEs, composting is unrealistic if the rubbery block
is not designed for biodegradability. Likewise, when targeting
tough plastics, including nondegradable ingredients at more
than 10 wt % loading precludes compostability, whereas
loadings of 20—30 wt % have typically achieved the best
balance of competitive properties in the existing literature. In
these cases, the benefit to using PLA would thus come from its
biorenewable sourcing, as the greenhouse gas (GHG)
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emissions for in-use operations including manufacturing and
processing have been reported to be similar among PLA and
polyolefins.””” However, when considering the GHG emissions
associated with PLA degradation under industrial composting
or in landfill, the latter deleteriously converting 50% of PLA
carbon to methane,”'” the most optimized production of Ingeo
PLA by NatureWorks LLC*'" suggests that landfilled PLA has
the same total GHG emissions as HDPE (2.6 kg CO,-eq kg™"),
while composted PLA incurs only 0.4 kg CO,-eq kg™ less.””
Moreover, if we choose to assess environmental impact by
other metrics, such as land and water use, petroleum-derived
plastics are less burdensome.”'” If not motivated by LCA, the
decision to arbitrarily incorporate PLA into any given product
does not “displace” nonrenewable thermoplastics from the
materials economy. Commodity plastics (HDPE, 1.01 USD
kg™'; LLDPE, 0.94 USD kg™'; LDPE, 1.24 USD kg™'; PP, 1.20
USD kg™'; PET, 1.52 USD kg '; PS, 1.36 USD kg™'; PVC,
0.93 USD kg™'; North American prices current as of March
2025) currently have such a large price point advantage over
PLA (242 USD kg™') and other biorenewable plastics that
their demands are essentially independent.”’*~"'® That is,
while PLA production capacity is accelerating, it has little to no
impact on the size or trajectory of petro-plastic markets. But
when viewed in parallel with the aforementioned policy
measures, as well as mountin§ consumer preference for
ecologically benign materials,”’”** increasing PLA presence
across the thermoplastics market will help to motivate further
increases in its production capacity toward the crucial goal of
cost-competitiveness. If PLA becomes as affordable as
polyolefins, its demand may surge in a wide array of markets.

Thus, taking stock of these constraints, we must clearly
understand target markets for new PLA-containing materials
and carefully choose the identity and content of non-PLA
components accordingly. The optical transparency or trans-
lucency of neat PLA block polymer plastics (Tough Plastics)
and PLA blends with standalone tougheners (end of Blend
Compatibilizers and Standalone Tougheners) naturally sug-
gests their candidacy for replacing HDPE, LLDPE, PP, PS, and
PET in single-use applications. Because single-use products are
landfilled or leak into the environment at the highest rates, it is
particularly essential to preserve the route to a sustainable end-
of-life by using compostable co-blocks in such applications.
Underused biomass waste feedstocks for co-blocks or
comonomers should be prioritized, including lignocellulosics,
agricultural waste, and microalgae.””'~*** As part of these
investigations, directly verifying compostability using ASTM
D5338 is most preferable, though the entailed requirements of
time (6 months), material (~100 g), and instrumentation
(respirometers or online gas chromatographs) limit the
accessibility of this method. To address these hurdles, da
Silva et al. constructed an inexpensive in-house Bartha
respirometer and stimulated their compost inoculum with
yeast, reducing the biodegradation time to 28 days while using
only 0.25 g of each polymer sample and qualitatively matching
results from ASTM D5338.”** Further progress in accelerated
composting will afford PLA block polymer researchers a more
tractable route to comprehensively assessing their materials’
circularity potential. Given the lack of formal third-party
standardization for accelerated testing, these protocols must be
replicated as consistently as possible across different
laboratories.

Conversely, when using or validating compostable co-blocks
is not feasible, we should target products for the highest-value,
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lowest-volume, longest-lifetime applications possible, such as
engineering plastics and high-performance elastomers and
adhesives. This will slow the influx of PLA materials into
unsustainable end-of-life pathways and further supply the
portfolio of advanced sustainable materials to deploy when
economically permissible. For instance, the currently highest
performing compatibilized PLA blends have comparable
properties to several engineering plastics (Table S2).
Conveniently, optical transparency is a less frequent require-
ment for engineering plastics, and most PLA blends are opaque
due to large droplet sizes and refractive index mismatch
between PLA and the dispersed phase. PLA block polymer
research is needed for increasingly sophisticated compatibil-
izers that offer parity on processability and in-use properties.
Recently, PLA blends with biodegradable dispersed }ghases,
including PBAT and poly(butylene succinate), **'***** have
emerged as high-performing materials when loaded with at
least S wt % compatibilizer. Considering the constraints we
have discussed, reducing the required compatibilizer loading to
1 wt % would achieve substantial benefits. The product would
be cheaper, comply with compostability regulations, and
extend the synthetic scope for compatibilizers to nonrenewable
co-blocks, which could itself further reduce costs. Success in
this endeavor could inspire a new market for high-value, fully
circular engineering plastics.

Scalability. We must choose safely and economically
scalable chemistries for PLA block polymers if they are to be
feasible in a future circular economy. In commercial
production, PLA and other thermoplastics are synthesized in
bulk with the highest permissible catalyst loadings for the
fastest practical throughput at maximum monomer conversion.
These products often contain residual monomer and catalyst,
and they tend to have considerably higher molar mass
dispersities than those desirable for academic structure—
property studies. If the favorable properties discovered for a
material in its target market crucially depend on low molar
mass dispersity, well-defined microstructure, and extensive
purification, then it has dubious technical relevance.

In the tough plastics space, PLA materials blended with
rubber or standalone tougheners are advantageous in this view,
as the high-cost block polymers are included at low weight
fractions, and the preparation only involves melt-blending
them with commercial materials. Neat PLA-rich block
polymers, however, face more stringent requirements. Ideally,
these syntheses would take place in a one-pot method.
Depending on the block synthesis order, this would require
miscibility between the co-block and lactide or between PLA
and the comonomer. The comonomers would ideally have
ceiling temperatures compatible with bulk lactide polymer-
izations, which are typically carried out between 140 and 180
°C. Sufficient lactide purity would also be crucial. The higher
the molar mass of a targeted PLA block, the more likely are
impurities within the lactide to adventitiously initiate impurity
homopolymer chains in competition with the intended
initiator.'”” Because plastics require large PLA molar masses
relative to co-blocks, impurity-rich lactide could produce
excessively short PLA blocks and compromise mechanical
properties. As detailed earlier, molar mass dispersity can
impact self-assembled block polymer morphology, and so the
precise morphologies obtained may be impacted by polymer-
ization method. Hence, the most commercially actionable
approaches will verify (in)compatibility between PLA and the
co-block (or comonomer), identify tractable lactide purifica-
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tion methods, and confirm property retention after bulk
synthesis.

In the case of TPEs with lower PLA content, synthetic
requirements might be easier and more technologically
disruptive. Controlled anionic polymerization is used for
commercial production of TPEs derived from fossil resour-
ces.””® This technique’s inherent sensitivity to impurities and
the entailed constraints on polymerization conditions
complicate large-scale production.””” Here, one-pot synthetic
capabilities for the synthesis of renewable, rubbery midblocks
and subsequent chain extension with lactide are advantageous.
The monomers that give low glass transition polymers are
often liquids at room temperature, allowing purification
through distillation. Lactide purity requirements are also less
stringent due to the lower PLA content.

Postreaction purification at scale should not be overlooked.
Devolatilization of residual monomer and solvent is common-
place in industry,”*® and therefore light comonomers are
favorable considering the success of sublimation in removing
lactides.'”>**” Sn(oct), catalyst is generally not removed from
commercial PLA products, and so tin(Il)-active lactone
comonomers are attractive for one-pot reactions. In light of
the current discomfort with using tin-based reagents, dimethyl
phosphonic acid'*’ and HCI*****" are also useful for ROP of
lactone comonomers and are easily devolatilized.

Crucial Property Testing. Processability. High-through-
put melt processing operations benefit from three material
attributes: shear thinning, extensional thickening, and rapid
crystallization for crystallizable components. If a PLA blend or
block polymer has a much greater shear viscosity than PLA
homopolymer, efficient processing would require higher
temperatures, which could pose risks of PLA degradation
when higher than about 200 °C for prolonged periods.
Dispersed components in blends and composites tend to
increase shear viscosity, especially rigid materials such as
cellulose nanofibers”***** and carbon fibers.”** In these cases,
it is worthwhile to evaluate the viscosity-temperature relation-
ships within the processing window (along with thermogravi-
metric analyses to assess PLA thermal stability) and with
respect to viscosities of commercial materials in the target
market. Extensional thickening, characterized by a rapid
increase in the transient extensional viscosity during melt
extension, facilitates film blowing, extrusion blow-molding, and
thermoforming.”****® Not all grades of commercial linear PLA
thicken in extension, and so there is opportunity to generally
improve PLA melt strength by using nonlinear block polymer
architectures”**”*** and by including both PLLA and PDLA
blocks to generate SCs.””” While SCs are also useful as
nucleating agents to address PLLA’s slow crystallization, they
have the often overlooked drawback of enhanced hydrolytic
stability, which can hinder industrial composting.**>**'
Alternatively, low wei§ht fractions of well-dispersed, bioderived
nucleating agents”*>*** should be investigated as complements
to rubbery homopolymers or co-blocks to produce compo-
stable, tough, fast crystallizing materials.

Thermal Resilience As Processed. Most research articles on
PLLA upgrading make some mention of its slow crystallization
kinetics, and some target acceleration strategies as part of the
original work. Increasing the maximum service temperature
(MST) of as-processed parts is the ultimate (but sometimes
unmentioned) goal of accelerating PLLA crystallization. While
the MST is often empirically defined, the HDT and Vicat
softening temperature (VST) are the most common proxies
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measurable at lab scales for plastics. Under constant load at
controlled heating rates, the HDT marks a flexural deflection
threshold,”****> while the VST marks a depth of flat needle
penetration. % We note the ease of HDT measurement
according to ASTM E2092-23: specimens with minimal
dimensions of 12 X 10 X 1 mm are typical, requiring only
150 mg of PLA. However, conventional analyses of thermal
resilience — the second heating crystallinity measured with
dynamic DSC, the isothermal crystallization half-time, the
crystallite nucleation density measured with polarized optical
microscopy, and the plateau storage modulus above T, piia
measured with dynamic mechanical thermal analysis —
rationalize, but do not directly inform, market readiness. It is
also worth noting that meaningfully 1ncreas1ng PLLA’s HDT
requires achieving at least 40% crystallinity.”*” Therefore, it is
essential to measure the first heating crystallinity (or HDT) of
mechanical specimens as processed. Adopting this perspective
will help identify and refine the most promising, crystallinity-
tolerant mechanical enhancements.

In TPEs, the high melting point of PLLA (T, ~ 170—180
°C) or its SC with PDLA (T,, ~ 220—230 °C) could also
provide a thermal resilience advantage over the incumbent
styrenic TPEs with hard segment resilience limited by T, pg ~
100 °C.*** These high melting points position PLA- based
materials in the highest tiers of TPE thermal stability, which is
especially beneficial for biomedical applications, where steam
sterilization is preferred.”*’

Aging Resistance. Physical aging refers to the contraction of
free volume that occurs below T, as chain motion gradually
reconfigures the molecules into lower free energy states relative
to the initial nonequilibrium glass.”>” PLA dramatically
embrittles via this mechanism over just 48 h of room
temperature aging, with typical strains at break decreasing
from over 250% to less than 10% over that time period.”>" In
typical plastic life cycles, the time elapsed between the original
processing and consumer use of a product could span weeks to
months. However, treatments of physical aging in enhanced
PLA materials are rare in the literature, most often appearing
only when research specifically aims to engineer aging
resistance into the material. Measuring excellent mechanical
properties after 24 or 48 h of aging, which are the most
commonly reported aging times, does not guarantee that these
properties will persist for weeks, let alone months, to serve in

se.’'®® This is especially important when targeting
engineering plastic markets, as these products’ service
durations far exceed those of single-use plastics. Failing to
report aging time obscures materials’ technical relevance given
the extreme age-sensitivity of PLA’s toughness. Figure 16
displays the reported tensile properties of all PLA block
polymer plastics reviewed in this Perspective as functions of
aging time (symbols) and total PLA weight fraction (color).
Casting the metrics in this way shows the property ranges
offering the highest PLA valorization potential (i.e., the highest
wpra), as well as the aging time’s influence on mechanical
properties. Materials richer in PLA tend to have higher
strength and stiffness, though at the expense of ductility and
toughness due to the inherently greater potential for physical
aging. Note the high frequency of materials on the frontier of
both strong and ductile (Figure 16a) or both stiff and tough
(Figure 16b) that lack a reported aging time. Thus,
inconsistencies in reports of aging also make it difficult to
definitively identify property bottlenecks and breakthroughs to
inform future research. We must more consistently perform
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Figure 16. Compiled tensile properties of PLA-based block polymer
plastics highlighted in this Perspective. The marker style indicates
reported aging time (or lack thereof), and the color indicates the total
weight fraction of PLA in the material.

mechanical testing on specimens of advanced physical age to
sidestep pitfalls in material design, making sure to report an
aging time alongside every property measured.

Optical Transparency. The automotive, aerospace, athletic,
and other industries often face a trade-off between optical
transparency and desirable mechanical properties in high-
performance parts. Inorganic and polymeric glasses are
transparent but lack the toughness and strength required to
withstand mechanical challenges in use, such as scratches and
impact forces.”> Conversely, compositing glassy polymers
with rubber provides toughness but often reduces optical
clarity due to the refractive index mismatch between the host
and dispersed phase. Decreasing the dispersed phase particle
diameters below 40 nm sufficiently reduces their Rayleigh
scattering of visible light wavelengths to achieve transparency.
PLA block polymers easily accomplish this task owing to the
nanoscale self-assembly of block domains, which typically have
dimensions ranging from 5 to 50 nm. But in polymer blends,
which currently have more promise for engineering plastic
applications than neat block polymers, interfacial tensions
between host and dispersed polymers lead to typical particle
sizes between 200 and 1000 nm.”>’ Instead of reducing the
scatterer size, the next approach is to reduce the scattering
contrast by matching the components’ refractive indices. A
popular commercial example is MABS (methyl methacrylate
acrylonitrile butadiene styrene), in which methyl methacrylate
is incorporated into the acrylonitrile-styrene copolymerization
to better match the refractive indices of the stiff ABS matrix
and PB droplets. In this case, the methyl methacrylate content
must be carefully controlled so as not to compromise
toughness.”* Therefore, the discovery of renewable, rubbery
polymers closely or fully index-matched with PLA will be
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instrumental in helping compatibilized PLA blends keep pace
with property demands in the engineering plastics market.

B SUMMARY

The vast field of polymer science and technology has grown
immensely in the past century, fueled by the desire to meet the
needs of a growing world population. As such, the world has
been inundated with plastic products from the convenient (e.g.,
diapers, grocery bags, cell phones), to the life-saving (e.g., IV
bags, medical tubing, pharmaceuticals), to the extraordinary
(e.g., airplane parts, prosthetic limbs, computers). However, in
meeting the needs of the here and now, less attention to the
needs of future generations has been given. Despite bleak
projections regarding the state of plastic pollution, we must
maintain the pace of sustainability innovation to support the
most aggressive pollution-reducing strategy, the System
Change Scenario.”®>%>%%

While bioplastics remain currently less than 1% of global
plastic production, this number is certain to increase in coming
years as governmental policies seek to stem the flow of
unsustainable plastics into the environment. As the largest
share of that meek percentage, PLA shows promise as a
bioplastic for its ability to be biosourced and its propensity
toward degradation in industrial composting facilities. While its
merits are manyfold, the use of PLA within everyday
applications requires more technological advancements to
truly harness its useful properties. One such way through
which this will be accomplished is the development, scale-up,
and production of block polymers containing PLA segments.
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